2PM.Network
WebsiteXDiscordLinkedinGithub
  • Overview
    • What is 2PM.Network
    • Architecture
    • FAQ
    • Official Social Channels
  • 2PM Data VSIES Service
    • What is Data VSIES and why is it important
    • [V] Data Validation (ZK)
    • [SI] Data Standardization and Index
    • [E] Data Encryption Client (FHE)
    • [S] Data Storage and Access
    • Data VSIES SDK
  • Node Framework
    • Modular Architecture
    • Federated Learning
      • Horizontal Federated Learning Task
      • Logistic Regression Task
      • On-chain Secure Aggregation
      • Typical Scenarios
    • FHE Machine Learning
      • Built-in Models
      • Deep Learning
      • Typical Scenarios
    • Task Submission
    • Running a 2PM Node
      • Installation
      • Chain Connector Configuration
      • Data Preparation
      • Joining a Subnet
  • Security and Verification
    • Node Staking and Slash Mechanism
    • Running Verification Client
      • EigenLayer
      • Mind Network
    • Restaking and Delegation
  • Model Inference
    • 2PM Node Inference API
    • Posting Request to a Subnet Model
    • Getting Inference Results on Chain
      • Oracle Adapters
  • Monetization and Incentives
    • AI Model IP Assets
    • Distribution Algorithm
  • 2PM DAO
    • Build Subnets
      • Establishing New Subnets
      • General Requirements
      • Data Schema Definition
      • Model Selection
      • Task Implementation
    • $DMP Token
  • Deployed Smart Contracts
    • Subnets on Testnets
    • Local Deployment Guideline
  • Ecosystem
    • Partners
    • Use Cases
      • Private Personalized Recommendation
Powered by GitBook
On this page
  • Example Subnet Deployed on 0G Testnet
  • Description
  • Data Schema
  • Blockchain Configuration
  • Deployed Contracts
  • FHE ML Data Standardization and Index on 0G Testnet
  1. Deployed Smart Contracts

Subnets on Testnets

Previous$DMP TokenNextLocal Deployment Guideline

Last updated 10 months ago

Example Subnet Deployed on 0G Testnet

Description

The objective is to train an AI model to predict whether a student's grade will improve through participation in the PSI program.

Data Schema

Fields
Types
Description

Grade

Integer (0 or 1)

Binary indicator of grade improvement (1 for improvement and 0 for no improvement)

TUCE

Integar (0-100)

Economics test score

PSI

Integer (0 or 1)

Participation in the program

GPA

Float (0.0-4.0)

Grade point average

Blockchain Configuration

Deployed Contracts

Contracts
Address

IdentityContract

0x799682Ef3c76f31227C2Ce9b9C55F972b6318fe2

HFLContract

0x2608282b3c870146bA10A6cCFc3d6205a9bB8c47

DataHub

0xcFD0dCa25a6F63592F6C98910aBBa8dd206DB39C

HLRContract

0xd657917a0Cc2E80D8a750eD7082f692Fd471FCAe

PlonkVerifier3

0x86D29f6d088d71AA59D6D44203e05f2ab126d852

Staking

/

TwoPMDAO

/

TwoPMNFT

/

RoyaltyToken

/

FHE ML Data Standardization and Index on 0G Testnet

Contracts
Address

DataRegistry

0x0046D61859Da85620A7257aF732e8330571aC731

Flow

0x8873cc79c5b3b5666535C825205C9a128B1D75F1

https://docs.0g.ai/0g-doc/run-a-node/testnet-configuration