2PM.Network
WebsiteXDiscordLinkedinGithub
  • Overview
    • What is 2PM.Network
    • Architecture
    • FAQ
    • Official Social Channels
  • 2PM Data VSIES Service
    • What is Data VSIES and why is it important
    • [V] Data Validation (ZK)
    • [SI] Data Standardization and Index
    • [E] Data Encryption Client (FHE)
    • [S] Data Storage and Access
    • Data VSIES SDK
  • Node Framework
    • Modular Architecture
    • Federated Learning
      • Horizontal Federated Learning Task
      • Logistic Regression Task
      • On-chain Secure Aggregation
      • Typical Scenarios
    • FHE Machine Learning
      • Built-in Models
      • Deep Learning
      • Typical Scenarios
    • Task Submission
    • Running a 2PM Node
      • Installation
      • Chain Connector Configuration
      • Data Preparation
      • Joining a Subnet
  • Security and Verification
    • Node Staking and Slash Mechanism
    • Running Verification Client
      • EigenLayer
      • Mind Network
    • Restaking and Delegation
  • Model Inference
    • 2PM Node Inference API
    • Posting Request to a Subnet Model
    • Getting Inference Results on Chain
      • Oracle Adapters
  • Monetization and Incentives
    • AI Model IP Assets
    • Distribution Algorithm
  • 2PM DAO
    • Build Subnets
      • Establishing New Subnets
      • General Requirements
      • Data Schema Definition
      • Model Selection
      • Task Implementation
    • $DMP Token
  • Deployed Smart Contracts
    • Subnets on Testnets
    • Local Deployment Guideline
  • Ecosystem
    • Partners
    • Use Cases
      • Private Personalized Recommendation
Powered by GitBook
On this page
  1. Node Framework
  2. FHE Machine Learning

Deep Learning

PreviousBuilt-in ModelsNextTypical Scenarios

Last updated 10 months ago

In 2PM.Network, the process of defining a Fully Homomorphic Encryption (FHE) Machine Learning computation task aligns with the ZAMA Concrete ML. Once defined, the computation task can be dispatched to nodes for processing via the Node API. This integration streamlines the workflow, ensuring a seamless transition from task creation to execution within the 2PM.Network environment.

For how to define a task to train Deep Learning Models, please refer to ZAMA Concrete ML Docs:

Using Torch

Using ONNX